Физические свойства и структурные характеристики


Закрытая пористость по размерам и распределению пор характеризуется: а) интегральной кривой распределения объема пор по их радиусам в единице объема  и б) дифференциальной кривой распределения объема пор по их радиусам.
Свойства строительного материала определяются его составом, структурой и прежде всего значением и характером пористости.
•          Пустотность — количество пустот, образующихся между зер
нами рыхлонасыпанного материала (песка, щебня и т. п.) или
имеющихся в некоторых изделиях, например в пустотелом кир
пиче, панелях из железобетона. Пустотность песка и щебня
составляет 35...45%, пустотелого кирпича — 15...50%.
• Водопроницаемость — способность материала поглощать воду при увлажнении и отдавать ее при высушивании. Насыщение материала водой может происходить при действии на него воды в жидком состоянии или в виде пара. В связи с этим соответственно различают два свойства материала: гигроскопичность и водопоглощение.
•          Гигроскопичность — свойство материала поглощать водяные пары из воздуха и удерживать их вследствие капиллярной конденсации. Она зависит от температуры воздуха, его относительной влажности, вида, количества и размера пор, а также от природы вещества. Одни материалы энергично притягивают своей поверхностью молекулы воды, и их называют гидрофильными, другие отталкивают воду, и их относят к гидрофобным. Отдельные гидрофильные материалы способны растворяться в воде, тогда как гидрофобные стойко сопротивляются действию водной среды. При прочих равных условиях гигроскопичность материала зависит от его природы, величины поверхности, структуры (поры и капилляры). Материалы с одинаковой пористостью, но имеющие более мелкие поры и капилляры, оказываются более гигроскопичными, чем крупнопористые материалы.
Водопоглощение всегда меньше истинной пористости, так как часть пор оказывается закрытой, не сообщающейся с окружающей средой и недоступной для воды. Объемное водопоглощение всегда меньше 100%, а водопоглощение по массе у очень пористых материалов может быть более 100%.
Водопоглощение строительных материалов изменяется главным образом в зависимости от объема пор, их вида и размеров. Влияют на величину водопоглощения и природа вещества, степень гидрофильное™ его.
В результате насыщения водой свойства материалов значительно изменяются: увеличиваются плотность и теплопроводность, а в некоторых материалах (древесине, глине) увеличивается объем (они разбухают), понижается прочность вследствие нарушения связей между частицами материала проникающими молекулами воды.
Этот коэффициент характеризует водостойкость материала. Для легкоразмокаемых материалов (глина) /гразм = 0, для материалов   (металл,  стекло),  которые  полностью  сохраняют  свою прочность при действии воды, /гразм = 1. Материалы с /гразм ^ 0,8 относят к водостойким; материалы с /гразм <С 0,8 в местах, подверженных систематическому увлажнению, применять не разрешается.
• Влагоотдача — способность материала отдавать влагу. Материалы, находясь на воздухе, сохраняют свою влажность только при условии определенной, так называемой равновесной относительной влажности воздуха. Если же последняя оказывается ниже этой равновесной влажности, то материал начинает отдавать влагу в окружающую среду (высушиваться). Скорость влагоотдачи зависит, во-первых, от разности между влажностью материала и относительной влажностью воздуха — чем она больше, тем интенсивнее происходит высушивание; во-вторых, на влагоотдачу влияют свойства самого материала, характер его пористости, природа вещества. Материалы с крупными порами и гидрофобные легче отдают воду, чем мелкопористые и гидрофильные.
В естественных условиях влагоотдача строительных мате риалов характеризуется интенсивностью потери влаги при относительной влажности воздуха 60% и температуре 20°С.
В воздухе в естественных условиях всегда содержится влага. Поэтому влажный материал высушивается при этих условиях не полностью, а только до влажности, называемой равновесной. Состояние материала при этом является воздушно-сухим. Древесина в комнатных условиях, где относительная влажность не превышает 60%, имеет влажность 8...10%, наружные стены зданий— 4...6%. С изменением относительной влажности воздуха изменяется и влажность материалов (если последние гидрофильные) .
•   Воздухостойкость — способность материала длительно выдерживать   многократное  систематическое  увлажнение   и   высушивание   без   значительных   деформаций   и   потери   механической прочности.  Материалы по-разному ведут себя по отношению к действию   переменной  влажности:   разбухают  при   увлажнении, дают  усадку   при   последующем   высыхании,   иногда   возникает и коробление материала. Систематическое увлажнение и высушивание вызывают знакопеременные напряжения в материале строительных  конструкций  и  со временем   приводят к  потере ими несущей  способности   (разрушению).   Бетон   в  таких  условиях склонен к разрушению, так как при высыхании цементный камень сжимается, а заполнитель практически не реагирует; в результате в цементном  камне возникают растягивающие  напряжения, он сжимается и отрывается от заполнителя. Древесина при изменении влажности подвергается знакопеременным деформациям.  Повысить  воздухостойкость  материалов  можно  путем введения   гидрофобных   добавок,   придающих   материалу   водоотталкивающие свойства.
•   Водопроницаемость — способность материала пропускать воду   под  давлением.   Водопроницаемость  характеризуется   количеством воды, прошедшей в течение 1 ч через 1 м2 площади испытуемого материала при давлении 1 МПа. Плотные материалы (сталь, стекло, битум, большинство пластмасс) водонепроницаемы.
• Морозостойкость — способность насыщенного водой материала выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения и значительного снижения прочности. Систематические наблюдения показали, что многие материалы в условиях попеременного насыщения водой и замораживания постепенно разрушаются. Разрушение происходит в связи с тем, что вода, находящаяся в порах материала, при замерзании увеличивается в объеме примерно до 9%. Наибольшее расширение воды при переходе в лед наблюдается при температуре —4°С; дальнейшее понижение температуры не вызывает увеличения объема льда. При заполнении пор водой и ее замерзании стенки пор начинают испытывать значительные напряжения и могут разрушаться. Определение степени морозостойкости материала производят путем замораживания насыщенных водой образцов при температуре от — 15 до —17°С и последующего их оттаивания. Такую низкую температуру опыта принимают по той причине, что вода в тонких капиллярах замерзает только при —10 °С.
Морозостойкость материала зависит от плотности и степени насыщения водой их пор. Плотные материалы морозостойки. Из пористых материалов морозостойкостью обладают только такие, у которых имеются в основном закрытые поры или вода занимает менее 90% объема пор. Материал считают морозостойким, если после установленного числа циклов замораживания и оттаивания в насыщенном водой состоянии прочность его снизилась не более чем на 15%, а потери в массе в результате выкрашивания не превышали 5%. Если образцы после замораживания не имеют следов разрушения, то степень морозостойкости устанавливают по коэффициенту морозостойкости
Для морозостойких материалов feF не должен быть менее 0,75. По числу выдерживаемых циклов попеременного замораживания и оттаивания (степени морозостойкости) материаль имеют марки F 10, 15; 25, 35, 50, 100, 150, 200 и более.
В лабораторных условиях замораживание образцов производят в холодильных камерах. Один — два цикла замораживания в камере дают эффект, близкий к (3...5)-годичному действию атмосферы. Существует также ускоренный метод испытания, по которому образцы погружают в насыщенный раствор сернокислого   натрия   и   затем   высушивают   при   температуре 100...110°С. Образующиеся при этом в порах камня кристаллы десятиводного сульфата натрия (со значительным увеличением объема) давят на стенки пор еще сильнее, чем вода при замерзании. Такое испытание является особо жестким. Один цикл испытания в растворе сернокислого натрия приравнивается к 5... 10 и даже 20 циклам прямых испытаний замораживанием.
Теплопроводность — свойство   материала   пропускать   тепло через свою толщину. Теплопроводность материала оценивают количеством   тепла,   проходящим   через   образец   материала   толщиной 1 м, площадью 1  м2 за  1 ч при разности температур на противоположных   плоскопараллельных   поверхностях   образца в  1°С.  Теплопроводность материала  зависит от многих факторов:   природы   материала,   его   структуры,   степени   пористости, характера пор, влажности и средней температуры, при которой происходит  передача  тепла.   Материалы  с   закрытыми   порами менее   теплопроводны,   нежели   материалы   с   сообщающимися порами. Мелкопористые материалы имеют меньшую теплопровода ность, чем крупнопористые. Это объясняется тем, что в крупных и   сообщающихся   порах   возникает   движение   воздуха,   сопровождающееся  переносом  тепла.  Теплопроводность  однородного материала зависит от плотности. Так, с уменьшением плотности материала теплопроводность уменьшается, и наоборот. Общей зависимости между плотностью материала  и теплопроводностью  не установлено,  однако для  некоторых  материалов, имеющих влажность  \...7%  по объему, такая зависимость  наблюдается.
На теплопроводность значительное влияние оказывает влажность. Влажные материалы более теплопроводны, нежели сухие. Объясняется это тем, что теплопроводность воды в 25 раз выше теплопроводности воздуха. В табл. 1.3 приведена теплопроводность некоторых строительных материалов.
Теплопроводность   характеризует   теплофизические   свойства материалов, определяя их принадлежность к классу теплоизоляционных   (А — до  0,082;   Б — 0,082...0,116   и   т.   д.),   конструкционно-теплоизоляционных   и   конструкционных   (более   0,210). Теплопроводность материала  можно также характеризовать термическим сопротивлением (R=l/X)—величиной, обратной теплопроводности.
Теплопроводность имеет очень важное значение для материалов, используемых в качестве стен и перекрытий отапливаемых зданий, для изоляции холодильников и различных тепловых агрегатов (котлов, теплосетей и т. п.). От величины теплопроводности непосредственно зависят затраты на отопление зданий, что особенно важно при оценке экономической эффективности ограждающих конструкций жилых домов и др.
Термическое сопротивление — важная характеристика наружных ограждающих конструкций; от нее зависят толщина наружных стен и затраты на отопление зданий.
 Теплоемкость — свойство материала поглощать при нагревании тепло. Характеризуется теплоемкость удельной теплоемкостью.
Удельная теплоемкость [Дж/(кг-°С)] стали составляет 460, каменных материалов — 755...925; тяжелого бетона — 800...900; лесных материалов — 2380...2720. Теплоемкость материала имеет важное значение в тех случаях, когда необходимо учитывать аккумуляцию тепла, например при расчете теплоустойчивости стен и перекрытий отапливаемых зданий, с целью сохранения температуры в помещении без резких колебаний при изменении теплового режима, при расчете подогрева материала для зимних бетонных работ, при расчете печей и т. д.
 Огнестойкость — способность материала выдерживать действие высокой температуры без потери несущей способности (большого  снижения  прочности  и  значительных деформаций).
Это свойство важно при пожарах, а так как в процессе тушения пожаров применяют воду, то при оценке степени огнестойкости материала действие высокой температуры сочетают с действием воды.
Строительные материалы по огнестойкости делят на несгораемые, трудносгораемые и сгораемые. Несгораемые материалы под воздействием высокой температуры или огня не тлеют и не обугливаются (природные и искусственные неорганические материалы, металлы). Однако одни из этих материалов под воздействием высокой температуры не растрескиваются и не деформируются, например керамический кирпич, а другие, в частности сталь, подвержены значительным деформациям. Поэтому стальные конструкции не могут быть отнесены к огнестойким. Трудносгораемые материалы под воздействием огня или высоких температур обугливаются, тлеют или с трудом воспламеняются, но продолжают гореть или тлеть только при наличии огня (древесина, пропитанная огнезащитными составами). Сгораемые материалы горят и тлеют под воздействием огня или высоких температур и продолжают гореть после устранения огня (все органические материалы, не подвергнутые пропитке огнезащитными составами).

 

Автор: КСМ от 05.12.2010





  

 


Печать | Copyright © 2015 КСМ.рф All rights reserved

Наш Интернет-сайт КСМ.рф носит исключительно информационно-описательный характер и ни при каких условиях не является публичной офертой, которая определяется положениями Статьи 437 Гражданского кодекса РФ. Для получения подробной информации о стоимости продукции (песок, цемент, кирпич, огнеупоры, теплоизоляция, бетон и т.п), пожалуйста, обращайтесь к специалистам по указанным в контактах телефонам.
Владелец ресурса оставляет за собой право в любое время вносить изменения на сайте. Для получения актуальной информации о нашей продукции просьба обращаться к менеджерам.

| Контакты